PSSA and Keystone Exams
Summer 2023 Workshops

Keystone Algebra 1

Baskets of Tomatoes

Handscoring
 Anchor Set

1. Small baskets of tomatoes are sold at a vegetable stand for $\$ 3$ per basket. Large baskets of tomatoes are sold at the stand for $\$ 5$ per basket. Only whole numbers of baskets may be purchased.

A customer purchases a total of 8 baskets of tomatoes and pays $\$ 36$.
A. Write and solve a system of equations that models the number of small baskets (x) and the number of large baskets (y) that the customer purchases. Show or explain all your work.

1. Continued. Please refer to the previous page for task explanation.

Another customer claims that he can purchase a total of 10 baskets of tomatoes and pay $\$ 45$.
B. Use a system of equations that describes this other customer's purchase to explain why the claim is incorrect.

Algebra I
 Baskets of Tomatoes

Assessment Anchor:
A1.1.2 Linear Equations
Specific Anchor Descriptor addressed by this item:
A1.1.2.2 Write, solve, and/or graph systems of linear equations using various methods.
Scoring Guide:

Score	In this item, -
4	The student demonstrates a thorough understanding of linear equations by correctly solving problems with clear and complete procedures and explanations when required.
3	The student demonstrates a general understanding of linear equations by solving problems and providing procedures and explanations with only minor errors or omissions.
2	The student demonstrates a partial understanding of linear equations by providing a portion of the correct problem solving, procedures, and explanations.
1	The student demonstrates a minimal understanding of linear equations.
0	The response has no correct answer and insufficient evidence to demonstrate any understanding of the mathematical concepts and procedures as required by the task. Response may show only information copied from the question.

Top Scoring Student Response And Training Notes:

Score	Description
4	Student earns 4 points.
3	Student earns 3.0 - 3.5 points.
2	Student earns 2.0-2.5 points.
1	Student earns $0.5-1.5$ points. OR Student demonstrates minimal understanding of linear equations.
0	Response is incorrect or contains some correct work that is irrelevant to the skill or concept being measured.

A.

What?	Why?
$x+y=8$	Sample Work:
$3 x+5 y=36$	$x+y=8 \rightarrow x=8-y$
	$3 x+5 y=36 \rightarrow 3 x+5 y=36$
AND	
	$3(8-y)+5 y=36$
$x=2$ (small baskets)	$24-3 y+5 y=36 \rightarrow x+6=8$
$y=6$ (large baskets)	$2 y=12 \rightarrow \quad x=2$
	$y=6$
	OR
	Sample Explanation:
	First, I set up my system of equations as $\begin{aligned} & x+y=8 \\ & 3 x+5 y=36\end{aligned}$. I then
	multiplied the first row by 5 and the second row by -1 , so I could add them together and cancel out the y-terms. This gave me $2 x=4$, so $x=2$. I substituted this value into the first equation and solved it for y to get $y=6$.

(3 score points)
$1 / 2$ point for each correct equation
$1 / 2$ point for each correct value of the solution
OR $1 / 2$ point for embedded solution
1 point for complete support
OR $1 / 2$ point for correct but incomplete support
B.

What?	Why?
	Sample Explanation: The system of equations that describes this other customer's $x+y=10$
purchase would be $3 x+5 y=45$. The solution of this system of	
equations exists, but neither x nor y is a whole number, so the	
customer cannot purchase 10 baskets of tomatoes for $\$ 45$.	

(1 score point)
1 point for correct and complete explanation
OR $1 / 2$ point for correct but incomplete explanation
16. Small baskets of tomatoes are sold at a vegetable stand for $\$ 3$ per basket. Large baskets of tomatoes are sold at the stand for $\$ 5$ per basket. Only whole numbers of baskets may be purchased.

A customer purchases a total of 8 baskets of tomatoes and pays $\$ 36$.
A. Write and solve a system of equations that models the number of small baskets (x) and the number of large baskets (y) that the customer purchases. Show or explain all your work.

Let $x=\#$ of small baskets
Let $y=\#$ of large baskets

$$
\begin{array}{ll}
3 x+5 y=36 \\
x+y=8
\end{array}, \begin{array}{ll}
y=8-x \\
& x+y=8 \\
3 x+5(8-x)=36 & 2+y=8 \\
3 x+40-5 x=36 & y=6
\end{array}
$$

The customer bought
2 small baskets and
6 large baskets. 1 used the substitution method when solving the system of equations.
16. Continued. Please refer to the previous page for task explanation.

Another customer claims that he can purchase a total of 10 baskets of tomatoes and pay $\$ 45$.
B. Use a system of equations that describes this other customer's purchase to explain why the claim is incorrect.

Let $x=\#$ ot small basket's
Let $y=$ \#t of large baskets

$$
\begin{aligned}
& x+y=10 \\
& 3 x+5 y=45 \\
& 3 x+5(10-x)=45 \\
& 3 x+50-5 x=45 \\
& -50 \quad \text {-50 } \\
& \begin{array}{ll}
3 x-5 x=-5
\end{array} \\
& \begin{array}{ll}
-2 x=-5 \\
-2 & \text { not } \\
x=2.5 & y=7.5
\end{array}
\end{aligned}
$$ would lead him to buy 2.5 small baskets and 7.5 large baskets, and this cannot be done.

Small baskets of tomatoes are sold at a vegetable stand for $\$ 3$ per basket. Large baskets of tomatoes are sold at the stand for $\$ 5$ per basket. Only whole numbers of baskets may be purchased.

A customer purchases a total of 8 baskets of tomatoes and pays $\$ 3 \bar{b}$.
A. Write and solve a system of equations that models the number of small baskets (x) and the number of large baskets (y) that the customer purchases. Show or explain all your work.
$x+y=8$
$3 x+5 y=\$ 36$
Solution: $(2,5)$
I used the substitution method to solve the system of equations. I took $x+y=8$ and put it into slope intercept form. I turned the equation into $y=-x+8 \mid$ then substituted the y value into y in the second equation. Doing so left me with $3 x-5 x+40=30$ sol completed the equation by subtracting $5 x$ from $3 x$ to get $-2 x+40=36$. Then, I subtracted 40 from $3 \hat{5}$ and got -4 . This left me with $-2 x=-4$ Which i simplified down to $x=2$ by dividing. Then i substituted x back into the y value and got $y=-2+8$ which equals 5 . So the customer purchased 2 small baskets (x), and $\overline{5}$ large baskets(y).

Another customer claims that he can purchase a total of 10 baskets of tomatoes and pay $\$ 45$.
B. Use a system of equations that describes this other customer's purchase to explain why the claim is incorrect.

$$
\begin{aligned}
& x+y=10 \\
& 3 x+5 y=45
\end{aligned}
$$

If you use the substitution method on this systems of equation: you end up with $-2 x=-5$ which cannot be simplified anis further because only whole numbers of baskets may be purchased.
199 / 1000

Small baskets of tomatoes are sold at a vegetable stand for $\$ 3$ per basket. Large baskets of tomatoes are sold at the stand for $\$ 5$ per basket. Only whole numbers of baskets may be purchased.

A customer purchases a total of 8 baskets of tomatoes and pays $\$ 3 \bar{b}$.
A. Write and solve a system of equations that models the number of small baskets (x) and the number of large baskets (y) that the customer purchases. Show or explain all your work.
\square
$x+y=8$
$3 x+5 y=35$
$x=2$
$y=5$
$2+$ है $=8$
$3^{*} 2+5^{*} 6=35$

Another customer claims that he can purchase a total of 10 baskets of tomatoes and pay $\$ 45$.
B. Use a system of equations that describes this other customer's purchase to explain why the claim is incorrect.

```
x+y=10
```

$3 x+5 y=45$

It is not possible because the numbers do not add up and multiply right there is no way to get 45 dollars using the 2 equations $x+y=10$ and $3 x+5 y=45$.
16. Small baskets of tomatoes are sold at a vegetable stand for $\$ 3$ per basket. Large baskets of tomatoes are sold at the stand for $\$ 5$ per basket. Only whole numbers of baskets may be purchased.

A customer purchases a total of 8 baskets of tomatoes and pays $\$ 36$.
A. Write and solve a system of equations that models the number of small baskets (x) and the number of large baskets (y) that the customer purchases. Show or explain all your work.

$$
\begin{aligned}
& 3 x+5 y=36 \\
& x+y=8 \\
& 3(2)+5(6)=36 \\
& 6+30=36 \\
& 36=36 \\
& z+6=8 \\
& 8=8
\end{aligned}
$$

The only way she would be able to spend 36 dollars on 8 baskets is if she bought 2 small and 6 large.
16. Continued. Please refer to the previous page for task explanation.

Another customer claims that he can purchase a total of 10 baskets of tomatoes and pay $\$ 45$.
B. Use a system of equations that describes this other customer's purchase to explain why the claim is incorrect.

$$
\begin{gathered}
x+y=10 \\
3 x+5 y=45
\end{gathered}
$$

This cains incorrect because if you try to buy 10 baskets at 5 dollarseach, the most expensive, 40 u can only get to 9 baskets costing 45 dollars. and to buy all small basket you would only spend 30 for 10. ND combination of baskets could be both 45 dollars with 10 baskets bought.
16. Small baskets of tomatoes are sold at a vegetable stand for $\$ 3$ per basket. Large baskets of tomatoes are sold at the stand for $\$ 5$ per basket. Only whole numbers of baskets may be purchased.

A customer purchases a total of 8 baskets of tomatoes and pays $\$ 36$.
A. Write and solve a system of equations that models the number of small baskets (x) and the number of large baskets (y) that the customer purchases. Show or explain all your work.

$$
\$ 3 x^{(2)}+\$ 5 y^{(6)}=\$ 36
$$

$$
\begin{aligned}
& \begin{array}{r}
3 \\
\times 6
\end{array} \\
& \begin{array}{r}
5 \\
\times 6 \\
\hline 30
\end{array} \\
& \begin{array}{r}
30 \\
+6 \\
\hline 36
\end{array} \\
& \begin{array}{l}
2 \text { small baskets } \\
6 \text { Large bastelets }
\end{array}
\end{aligned}
$$

16. Continued. Please refer to the previous page for task explanation.

Another customer claims that he can purchase a total of 10 baskets of tomatoes and pay $\$ 45$.
B. Use a system of equations that describes this other customer's purchase to explain why the claim is incorrect.

$$
\begin{aligned}
& 5.5 \\
& 64 \\
& 7,3 \\
& 8.2 \\
& 1.9
\end{aligned}
$$

$$
3 x+5 y=45
$$

This customer's claim is incorrect because if you plug in any pair of numbers adding up to (10) and plugging them into (x) and (y), you couldn't get 45. To get fris number, you would have to plug in decimals, but you could only use whole numbers.

Small baskets of tomatoes are sold at a vegetable stand for $\$ 3$ per basket. Large baskets of tomatoes are sold at the stand for $\$ 5$ per basket. Only whole numbers of baskets may be purchased.

A customer purchases a total of 8 baskets of tomatoes and pays $\$ 3 \overline{5}$.
A. Write and solve a system of equations that models the number of small baskets (x) and the number of large baskets (y) that the customer purchases. Show or explain all your work.

$$
\begin{aligned}
& \$ 3 x+\$ 5 y=\$ 3 \hat{b} \\
& y=6 \\
& x=2 \\
& l=2 \\
& \text { lfound out that } 5 \text { large baskets would equal } \$ 30 \text {; and that } 2 \text { small baskets would equal } \$ 5 \text { so I put } \\
& \text { them together and got } \$ 3 \overline{5} \text {. }
\end{aligned}
$$

146 / 1000

Another customer claims that he can purchase a total of 10 baskets of tomatoes and pay $\$ 45$.
B. Use a system of equations that describes this other customer's purchase to explain why the claim is incorrect.
$\$ 3 x+\$ 5 y=\$ 45$ isnt true because if you would take $5^{*} 9$ you will get 45 and you would have to get 10
baskets. If you try $5 * 8$ you will get $\$ 40$ but you have to get $\$ 45$ soyou will try and add the 2 small
baskets to hit the limit of 10 baskets. but when you try and do that with a small basket costing $\$ 32$
of them will equal $\$ 6$ so the 8 large baskets plus the 2 small baskets will come out to be $\$ 4 \overline{5}$.

F
16. Small baskets of tomatoes are sold at a vegetable stand for $\$ 3$ per basket. Large baskets of tomatoes are sold at the stand for $\$ 5$ per basket. Only whole numbers of baskets may be purchased.

A customer purchases a total of 8 baskets of tomatoes and pays $\$ 36$.
A. Write and solve a system of equations that models the number of small baskets (x) and the number of large baskets (y) that the customer purchases. Show or explain all your work.

$$
\begin{aligned}
& 3(2)+5(6) \\
& \begin{array}{l}
\left.\begin{array}{l}
3 x+5 y=36 \\
(2,6) \\
(7,3) \\
(12,0)
\end{array}\right)
\end{array} \\
& \begin{array}{ll}
3(7)+5(3) & x=2,7,12 \\
3(12)+5(0) & y=6,3,0
\end{array} \\
& \begin{array}{c|c}
x & y \\
\hline 0 & 7.2 \\
\times 1 & 6.6 \\
2 & 6 \\
\times 3 & 5.4 \\
\times 4 & 4.8 \\
\times 5 & 4.12 \\
\times 6 & 3.6 \\
7 & 3
\end{array} \\
& \begin{array}{r|r|}
\hline 8 & 2.4 \\
\times 9 & 1.8 \\
\times 10 & 1.2 \\
\times 11 & .6 \\
12 & 0
\end{array}
\end{aligned}
$$

16. Continued. Please refer to the previous page for task explanation.

Another customer claims that he can purchase a total of 10 baskets of tomatoes and pay $\$ 45$.
B. Use a system of equations that describes this other customer's purchase to explain why the claim is incorrect.

$$
3 x+5 y=45
$$

If he purchases 10 baskets the price
would bo even no

matter what ray he
arranges them, The closest
he could pay to dills is ${ }^{4} 46$ and 48 .
16. Small baskets of tomatoes are sold at a vegetable stand for $\$ 3$ per basket. Large baskets of tomatoes are sold at the stand for $\$ 5$ per basket. Only whole numbers of baskets may be purchased.

A customer purchases a total of 8 baskets of tomatoes and pays $\$ 36$.
A. Write and solve a system of equations that models the number of small baskets (x) and the number of large baskets (y) that the customer purchases. Show or explain all your work.

$$
\begin{aligned}
& x=2 \text { small } \\
& y=6 L_{\text {age }} \\
& 6.5 \neq 2.3=36
\end{aligned}
$$

The costomer cold have bought
2 small booklets and 6 large bosket for 36 dollars.
16. Continued. Please refer to the previous page for task explanation.

Another customer claims that he can purchase a total of 10 baskets of tomatoes and pay $\$ 45$.
B. Use a system of equations that describes this other customer's purchase to explain why the claim is incorrect.

The customer can rot have paid
for the baskets because 9 large baskets equals 45 ph s a mix ll bullet is 48 so
the costomed would go over the price range and couldn't have gottion to baskets the price of \$\$45.

Small baskets of tomatoes are sold at a vegetable stand for $\$ 3$ per basket. Large baskets of tomatoes are sold at the stand for $\$ 5$ per basket. Only whole numbers of baskets may be purchased.

A customer purchases a total of 8 baskets of tomatoes and pays $\$ 35$.
A. Write and solve a system of equations that models the number of small baskets $\{x$) and the number of large baskets (\bar{y}) that the customer purchases. Show or explain all your work.
$\$ 36=\$ 3 x+\$ 5 y$
$\$ 36=\$ 3(2)+\$ 5(6)$
Ifirst took the amount payed for a large basket and small basket and multiplied them until I was able to get the total amount payed for 8 baskets. Once I did that: I multiplied 5 and 5 to get 30 dollars and then 3 and 2 to get 万 dollars. The amounts then were able to be added together to get 35 dollars in total.
345 / 1000

Another customer claims that he can purchase a total of 10 baskets of tomatoes and pay $\$ 45$.
B. Use a system of equations that describes this other customer's purchase to explain why the claim is incorrect.

$$
\frac{\begin{array}{l}
\$ 45 \$ 3(5)+\$ 5(3) \\
105 x+3 y \\
23 / 1000
\end{array}}{\frac{1}{23}}
$$

Small baskets of tomatoes are sold at a vegetable stand for $\$ 3$ per basket. Large baskets of tomatoes are sold at the stand for $\$ 5$ per basket. Only whole numbers of baskets may be purchased.

A customer purchases a total of 8 baskets of tomatoes and pays $\$ 3 \overline{5}$.
A. Write and solve a system of equations that models the number of small baskets (x) and the number of large baskets (y) that the customer purchases. Show or explain all your work.
he buy 4 large baskets and 2 small baskets
42 / 1000

Another customer claims that he can purchase a total of 10 baskets of tomatoes and pay $\$ 45$.
B. Use a system of equations that describes this other customer's purchase to explain why the claim is incorrect.
he buy 3 large baskets and 10 small baskets
$43 / 1000$

Small baskets of tomatoes are sold at a vegetable stand for $\$ 3$ per basket. Large baskets of tomatoes are sold at the stand for $\$ 5$ per basket. Only whole numbers of baskets may be purchased.

A customer purchases a total of 8 baskets of tomatoes and pays $\$ 3 \overline{5}$.
A. Write and solve a system of equations that models the number of small baskets (x) and the number of large baskets (y) that the customer purchases. Show or explain all your work.
$(x)(y)=36$
(3) $(5)=36$

He/She would have to purchase 12 small baskets and 0 large baskets.
91/1000

Another customer claims that he can purchase a total of 10 baskets of tomatoes and pay $\$ 45$.
B. Use a system of equations that describes this other customer's purchase to explain why the claim is incorrect.
if you take $45 / 10$ you would get 4.5 so his answerwas hypotheoritical or not logical because its impossible
108 / 1000
16. Small baskets of tomatoes are sold at a vegetable stand for $\$ 3$ per basket, Large baskets of tomatoes are sold at the stand for $\$ 5$ per basket. Only whole numbers of baskets may be purchased.

A customer purchases a total of 8 baskets of tomatoes and pays $\$ 36$.
A. Write and solve a system of equations that models the number of small baskets (x) and the number of large baskets (y) that the customer purchases. Show or explain all your work.

$$
\begin{aligned}
& x \text { ix small sockets per baster } \\
& x=\text { lati basket par basket }
\end{aligned}
$$

$$
3 x+5 x+8 y=36
$$

$$
8 x+8 y=30
$$

$$
x=4.5
$$

16. Continued. Please refer to the previous page for task explanation.

Another customer claims that he can purchase a total of 10 baskets of tomatoes and pay \$45.
B. Use a system of equations that describes this other customer's purchase to explain why the claim is incorrect.

