K – 12 Inquiry and Design (Science Practices)

The nature of science and technology is characterized by applying process knowledge that enables students to become independent learners. These skills include observing, classifying, inferring, predicting, measuring, computing, estimating, communicating, using space/time relationships, defining operationally, raising questions, formulating hypotheses, testing and experimenting, designing controlled experiments, recognizing variables, manipulating variables, interpreting data, formulating models, designing models, and producing solutions. Everyone can use them to solve real-life problems. These process skills are developed across the grade levels and differ in the degree of sophistication, quantitative nature and application to the content. Each competency is to be taught throughout the teaching of science. It is how students learn science and is not once and done. All competencies must be taught continuously within each grade level and high school science classes.

Each competency is aligned to the 2002 Academic Standards for Science and Technology, SAS Standards, Assessment Anchors and Eligible Content, and Next Generation Science Standards. This is a worksheet for each school/district to ensure each competency is integrated into the entire science curriculum. It is important to note that addressing the competencies is throughout each grade level as students are learning science. Students must always be utilizing these skills throughout the entire year.

Asking questions and defining problems in K–2 builds on prior experiences and progresses to simple descriptive questions that can be tested. Asking questions and defining problems in 3–4 builds on K–2 experiences and progresses to specifying qualitative relationships. Asking questions and defining problems in 5–8 builds on K–4 experiences and progresses to specifying relationships between variables, and clarifying arguments and models. Asking questions and defining problems in 9–12 builds on K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.

K – 2	3 – 5	6 - 8	9 – 12
Ask questions based on observations to find more	Ask questions about what would happen if a	Ask questions that arise from careful observation of	Ask questions that arise from careful observation
information about the natural and/or designed	variable is changed.	phenomena, models, or unexpected results, to	of phenomena, or unexpected results, to clarify
world(s).		clarify and/or seek additional information.	and/or seek additional information.
Ask and/or identify questions that can be	Identify scientific (testable) and non-scientific (non-	Ask questions to identify and/or clarify evidence	Ask questions that arise from examining models
answered by an investigation.	testable) questions.	and/or the premise(s) of an argument.	or a theory, to clarify and/or seek additional
			information and relationships.
Define a simple problem that can be solved	Ask questions that can be investigated and predict	Ask questions to determine relationships between	Ask questions to determine relationships,
through the development of a new or improved	reasonable outcomes based on patterns such as	independent and dependent variables and	including quantitative relationships, between
object or tool.	cause and effect relationships.	relationships in models.	independent and dependent variables.
	Use prior knowledge to describe problems that can	Ask questions to clarify and/or refine a model, an	Ask questions to clarify and refine a model, an
	be solved.	explanation, or an engineering problem.	explanation, or an engineering problem.
	Define a simple design problem that can be solved	Ask questions that require sufficient and	Evaluate a question to determine if it is testable
	through the development of an object, tool,	appropriate empirical evidence to answer.	and relevant.
	process, or system and includes several criteria for		
	success and constraints on materials, time, or cost.		
		Ask questions that can be investigated within the	Ask questions that can be investigated within the
		scope of the classroom, outdoor environment, and	scope of the school laboratory, research facilities,
		museums and other public facilities with available	or field (e.g., outdoor environment) with available
		resources and, when appropriate, frame a	resources and, when appropriate, frame a
		hypothesis based on observations and scientific	hypothesis based on a model or theory.
		principles.	
		Ask questions that challenge the premise(s) of an	Ask and/or evaluate questions that challenge the

		argument or the interpretation of a data set.	premise(s) of an argument, the interpretation of a data set, or the suitability of a design.
		Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions.	Define a design problem that involves the development of a process or system with interacting components and criteria and constraints that may include social, technical, and/or environmental considerations.
Developing and using models in K-2 builds on prior	r experiences and progresses to include using and dev	veloping models (i.e., diagram, drawing, physical replic	ca. diorama, dramatization, or storyboard) that
		es to building and revising simple models and using mo	
-		lescribe, test, and predict more abstract phenomena a	
8 experiences and progresses to using, synthesizing	, and developing models to predict and show relation	ships among variables between systems and their cor	nponents in the natural and designed worlds.
K – 2	3-5	6-8	9-12
Distinguish between a model and the actual object, process, and/or events the model represents.	Identify limitations of models.	Evaluate limitations of a model for a proposed object or tool.	Evaluate merits and limitations of two different models of the same proposed tool, process, mechanism or system in order to select or revise a model that best fits the evidence or design criteria.
Compare models to identify common features and differences.	Develop a simple model based on evidence to represent a proposed object or tool.	Develop or modify a model—based on evidence – to match what happens if a variable or component of a system is changed.	Design a test of a model to ascertain its reliability
Develop and/or use a model to represent amounts, relationships, relative scales (bigger, smaller), and/or patterns in the natural and designed world(s).	Collaboratively develop and/or revise a model based on evidence that shows the relationships among variables for frequent and regular occurring events.	Use and/or develop a model of simple systems with uncertain and less predictable factors.	Develop, revise, and/or use a model based on evidence to illustrate and/or predict the relationships between systems or between components of a system.
	Develop a model using an analogy, example, or abstract representation to describe a scientific principle or design solution.	Develop and/or revise a model to show the relationships among variables, including those that are not observable but predict observable phenomena.	Develop and/or use multiple types of models to provide mechanistic accounts and/or predict phenomena, and move flexibly between model types based on merits and limitations.
	Develop and/or use models to describe and/or predict phenomena.	Develop and/or use a model to predict and/or describe phenomena.	Develop a complex model that allows for manipulation and testing of a proposed process of system.
	Develop a diagram or simple physical prototype to convey a proposed object, tool, or process.	Develop a model to describe unobservable mechanisms.	Develop and/or use a model (including mathematical and computational) to generate dat to support explanations, predict phenomena, analyze systems, and/or solve problems.
	Use a model to test cause and effect relationships or interactions concerning the functioning of a natural or designed system.	Develop and/or use a model to generate data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales.	

K – 2	3 – 5	6 - 8	9 – 12
With guidance, plan and conduct an investigation in collaboration with peers (for kindergarten).	Evaluate appropriate methods and/or tools for collecting data.	Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim.	Plan an investigation or test a design individually and collaboratively to produce data to serve as the basis for evidence as part of building and revising models, supporting explanations for phenomena, or testing solutions to problems. Consider possible confounding variables or effects and evaluate the investigation's design to ensure variables are controlled.
Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question.	Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution.	Conduct an investigation and/or evaluate and/or revise the experimental design to produce data to serve as the basis for evidence that meet the goals of the investigation.	Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.
Evaluate different ways of observing and/or measuring a phenomenon to determine which way can answer a question.	Make predictions about what would happen if a variable changes.	Evaluate the accuracy of various methods for collecting data.	Plan and conduct an investigation or test a design solution in a safe and ethical manner including considerations of environmental, social, and personal impacts.
Make observations (first hand or from media) and/or measurements to collect data that can be used to make comparisons.	Test two different models of the same proposed object, tool, or process to design solutions under a range of conditions.	Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions.	Select appropriate tools to collect, record, analyze, and evaluate data.
Make observations (firsthand or from media) and/or measurements of a proposed object or tool or solution to determine if it solves a problem or meets a goal.	Collect data about the performance of a proposed object, tool, process or system under a range of conditions.	Collect data about the performance of a proposed object, tool, process or system under system under a range of conditions.	Make directional hypotheses that specify what happens to a dependent variable when an independent variable is manipulated.
Make predictions based on prior experiences.			Manipulate variables and collect data about a complex model of a proposed process or system to identify failure points or improve performance relative to criteria for success or other variables.
Constructing our long and designing colutions	in K. 2 huilds on prior experiences and progresses to	the use of ouridance and ideas in constructing ouridance	a based accounts of natural phonomena and
designing solutions. Constructing explanations and	designing solutions in 3-4 builds on K-2 experiences	the use of evidence and ideas in constructing evidenc and progresses to the use of evidence in constructing	explanations that specify variables that describe
explanations and designing solutions supported by	multiple sources of evidence consistent with scientific	ons and designing solutions in 5–8 builds on K–4 exper c ideas, principles, and theories. Constructing explana t student-generated sources of evidence consistent w	tions and designing solutions in 9–12 builds on K–
K-2	3 - 5	6-8	9 – 12
Make observations (firsthand or from media) to	Construct an explanation of observed	Construct an explanation that includes qualitative	Make a quantitative and/or qualitative claim
construct an evidence-based account for natural	relationships (e.g., the distribution of plants in	or quantitative relationships between variables that	regarding the relationship between dependent

phenomena.	the back yard).	predict(s) and/or describe(s) phenomena.	and independent variables.
Use tools and/or materials to design and/or build	Use evidence (e.g., measurements, observations,	Construct an explanation using models or	Construct and revise an explanation based on
a device that solves a specific problem or a	patterns) to construct or support an explanation	representations.	valid and reliable evidence obtained from a
solution to a specific problem.	or design a solution to a problem.		variety of sources (including students' own
			investigations, models, theories, simulations,
			peer review) and the assumption that theories
			and laws that describe the natural world operate
			today as they did in the past and will continue to
			do so in the future.
Generate and/or compare multiple solutions to a	Identify the evidence that supports particular	Construct a scientific explanation based on valid	Apply scientific ideas, principles, and/or evidence
problem.	points in an explanation.	and reliable evidence obtained from sources	to provide an explanation of phenomena and
		(including the students' own experiments) and the	solve design problems, taking into account
		assumption that theories and laws that describe	possible unanticipated effects.
		the natural world operate today as they did in the	
		past and will continue to do so in the future.	
	Apply scientific ideas to solve design problems.	Apply scientific ideas, principles, and/or evidence to	Apply scientific reasoning, theory, and/or models to link evidence to the claims to assess the extent
		construct, revise and/or use an explanation for real-world phenomena, examples, or events.	
		real-world phenomena, examples, or events.	to which the reasoning and data support the explanation or conclusion.
	Generate and compare multiple solutions to a	Apply scientific reasoning to show why the data or	Design, evaluate, and/or refine a solution to a
	problem based on how well they meet the	evidence is adequate for the explanation or	complex real-world problem, based on scientific
	criteria and constraints of the design solution.	conclusion.	knowledge, student-generated sources of
		Apply scientific ideas or principles to design,	evidence, prioritized criteria, and tradeoff
		construct, and/or test a design of an object, tool,	considerations.
		process or system.	
		Undertake a design project, engaging in the design	
		cycle, to construct and/or implement a solution	
		that meets specific design criteria and constraints.	
		Optimize performance of a design by prioritizing	
		criteria, making tradeoffs, testing, revising, and re-	
		testing.	
		ing, and sharing observations. Analyzing data in 3-4 be	
		ervations. Analyzing data in 5–8 builds on K–4 experier	
		ques of data and error analysis. Analyzing data in 9–12	builds on K–8 experiences and progresses to
	omparison of data sets for consistency, and the use		
K – 2	3-5	6-8	9 – 12
Record information (observations, thoughts, and	When possible and feasible, digital tools should	Construct, analyze, and/or interpret graphical	Analyze data using tools, technologies, and/or

ideas).	be used.	displays of data and/or large data sets to identify linear and nonlinear relationships.	models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution.
Use and share pictures, drawings, and/or writings of observations.	Represent data in tables and/or various graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships.	Use graphical displays (e.g., maps, charts, graphs, and/or tables) of large data sets to identify temporal and spatial relationships.	Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible.
Use observations (firsthand or from media) to describe patterns and/or relationships in the natural and designed world(s) in order to answer scientific questions and solve problems.	Analyze and interpret data to make sense of phenomena, using logical reasoning, mathematics, and/or computation.	Distinguish between causal and correlational relationships in data.	Consider limitations of data analysis (e.g., measurement error, sample selection) when analyzing and interpreting data.
Compare predictions (based on prior experiences) to what occurred (observable events).	Compare and contrast data collected by different groups in order to discuss similarities and differences in their findings.	Analyze and interpret data to provide evidence for phenomena.	Compare and contrast various types of data sets (e.g., self-generated, archival) to examine consistency of measurements and observations.
Analyze data from tests of an object or tool to determine if it works as intended.	Analyze data to refine a problem statement or the design of a proposed object, tool, or process.	Apply concepts of statistics and probability (including mean, median, mode, and variability) to analyze and characterize data, using digital tools when feasible.	Evaluate the impact of new data on a working explanation and/or model of a proposed process or system.
	Use data to evaluate and refine design solutions	Consider limitations of data analysis (e.g., measurement error), and/or seek to improve precision and accuracy of data with better technological tools and methods (e.g., multiple trials).	Analyze data to identify design features or characteristics of the components of a proposed process or system to optimize it relative to criteria for success.
		Analyze and interpret data to determine similarities and differences in findings.	
		Analyze data to define an optimal operational range for a proposed object, tool, process or system that best meets criteria for success.	
computational thinking in 3–5 builds on K–2 experie compare alternative design solutions. Mathematica support explanations and arguments. Mathematica	ences and progresses to extending quantitative mean al and computational thinking in 6–8 builds on K–5 e al and computational thinking in 9-12 builds on K-8 e entials and logarithms, and computational tools for s	cognizing that mathematics can be used to describe the surements to a variety of physical properties and using xperiences and progresses to identifying patterns in la xperiences and progresses to using algebraic thinking a tatistical analysis to analyze, represent, and model dat	computation and mathematics to analyze data and rge data sets and using mathematical concepts to and analysis, a range of linear and nonlinear
K – 2	3-5	6 - 8	9 - 12
Decide when to use qualitative vs. quantitative	Decide if qualitative or quantitative data are best	Use digital tools (e.g., computers) to analyze very	Create and/or revise a computational model or

data.	to determine whether a proposed object or tool	large data sets for patterns and trends.	simulation of a phenomenon, designed device,
	meets criteria for success.		process, or system.
Use counting and numbers to identify and	Organize simple data sets to reveal patterns that	Use mathematical representations to describe	Use mathematical, computational, and/or
describe patterns in the natural and designed	suggest relationships.	and/or support scientific conclusions and design	algorithmic representations of phenomena or
world(s).		solutions.	design solutions to describe and/or support
			claims and/or explanations.
Describe, measure, and/or compare quantitative	Describe, measure, estimate, and/or graph	Create algorithms (a series of ordered steps) to	Apply techniques of algebra and functions to
attributes of different objects and display the	quantities (e.g., area, volume, weight, time) to	solve a problem.	represent and solve scientific and engineering
data using simple graphs.	address scientific and engineering questions and		problems.
	problems.		
Use quantitative data to compare two alternative	Create and/or use graphs and/or charts	Apply mathematical concepts and/or processes	Use simple limit cases to test mathematical
solutions to a problem.	generated from simple algorithms to compare	(e.g., ratio, rate, percent, basic operations, simple	expressions, computer programs, algorithms, or
	alternative solutions to an engineering problem.	algebra) to scientific and engineering questions and	simulations of a process or system to see if a model "makes sense" by comparing the
		problems.	outcomes with what is known about the real
			world.
		Use digital tools and/or mathematical concepts and	Apply ratios, rates, percentages, and unit
		arguments to test and compare proposed solutions	conversions in the context of complicated
		to an engineering design problem.	measurement problems involving quantities with
			derived or compound units (such as mg/mL,
			kg/m3, acre-feet, etc.).
		L	
Engaging in argument from evidence in K-2 builds	on prior experiences and progresses to comparing ic	leas and representations about the natural and design	ed world(s). Engaging in argument from evidence
		pposed by peers by citing relevant evidence about the	
argument from evidence in 6–8 builds on K–5 expe	riences and progresses to constructing a convincing	argument that supports or refutes claims for either exp	lanations or solutions about the natural and
designed world(s). Engaging in argument from evid	dence in 9–12 builds on K–8 experiences and progres	ses to using appropriate and sufficient evidence and so	ientific reasoning to defend and critique claims and
explanations about the natural and designed world	d(s). Arguments may also come from current scientific	c or historical episodes in science.	
K – 2	3 – 5	6 - 8	9 – 12
Identify arguments that are supported by	Compare and refine arguments based on an	Compare and critique two arguments on the same	Compare and evaluate competing arguments or
evidence.	evaluation of the evidence presented.	topic and analyze whether they emphasize similar	design solutions in light of currently accepted
		or different evidence and/or interpretations of	explanations, new evidence, limitations (e.g.,
		facts.	trade-offs), constraints, and ethical issues.
Distinguish between explanations that account	Distinguish among facts, reasoned judgment	Respectfully provide and receive critiques about	Evaluate the claims, evidence, and/or reasoning
for all gathered evidence and those that do not.	based on research findings, and speculation in an	one's explanations, procedures, models, and	behind currently accepted explanations or
	explanation.	questions by citing relevant evidence and posing	solutions to determine the merits of arguments.
		and responding to questions that elicit pertinent	
	Respectfully provide and receive critiques from	elaboration and detail. Construct, use, and/or present an oral and written	Respectfully provide and/or receive critiques on
Analyze why some evidence is relevant to a			

scientific question and some is not.	peers about a proposed procedure, explanation, or model by citing relevant evidence and posing specific questions.	argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.	scientific arguments by probing reasoning and evidence, challenging ideas and conclusions, responding thoughtfully to diverse perspectives, and determining additional information required to resolve contradictions.
Distinguish between opinions and evidence in one's own explanations.	Construct and/or support an argument with evidence, data, and/or a model.	Make an oral or written argument that supports or refutes the advertised performance of a device, process, or system based on empirical evidence concerning whether or not the technology meets relevant criteria and constraints.	Construct, use, and/or present an oral and written argument or counter-arguments based on data and evidence.
Listen actively to arguments to indicate agreement or disagreement based on evidence, and/or to retell the main points of the argument.	Use data to evaluate claims about cause and effect.	Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.	Make and defend a claim based on evidence about the natural world or the effectiveness of a design solution that reflects scientific knowledge and student-generated evidence.
Construct an argument with evidence to support a claim.	Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem.		Evaluate competing design solutions to a real- world problem based on scientific ideas and principles, empirical evidence, and/or logical arguments regarding relevant factors (e.g. economic, societal, environmental, ethical considerations).
Make a claim about the effectiveness of an object, tool, or solution that is supported by relevant evidence.			
		servations and texts to communicate new information	
summarize and obtain scientific and technical idea to evaluating the merit and validity of ideas and m the claims, methods, and designs.	as and describe how they are supported by evidence. nethods. Obtaining, evaluating, and communicating ir	Obtaining, evaluating, and communicating information formation in 9–12 builds on K–8 experiences and prog	n in 6–8 builds on K–5 experiences and progresses resses to evaluating the validity and reliability of
summarize and obtain scientific and technical idea to evaluating the merit and validity of ideas and m the claims, methods, and designs. K - 2	as and describe how they are supported by evidence. nethods. Obtaining, evaluating, and communicating in 3 – 5	Obtaining, evaluating, and communicating information information in 9–12 builds on K–8 experiences and prog 6–8	resses to evaluating the validity and reliability of 9 – 12
summarize and obtain scientific and technical idea to evaluating the merit and validity of ideas and m the claims, methods, and designs.	as and describe how they are supported by evidence. nethods. Obtaining, evaluating, and communicating ir	Obtaining, evaluating, and communicating information formation in 9–12 builds on K–8 experiences and prog	n in 6–8 builds on K–5 experiences and progresses resses to evaluating the validity and reliability of

showing how a machine works) support a	contained in corresponding tables, diagrams,	and/or technical information in written text with	information presented in different media or
scientific or engineering idea.	and/or charts to support the engagement in	that contained in media and visual displays to	formats (e.g., visually, quantitatively) as well as in
	other scientific and/or engineering practices.	clarify claims and findings.	words in order to address a scientific question or
			solve a problem.
Obtain information using various texts, text	Obtain and combine information from books	Gather, read, and synthesize information from	Gather, read, and evaluate scientific and/or
features (e.g., headings, tables of contents,	and/or other reliable media to explain	multiple appropriate sources and assess the	technical information from multiple authoritative
glossaries, electronic menus, icons), and other	phenomena or solutions to a design problem.	credibility, accuracy, and possible bias of each	sources, assessing the evidence and usefulness of
media that will be useful in answering a scientific		publication and methods used, and describe how	each source.
question and/or supporting a scientific claim.		they are supported or not supported by evidence.	
Communicate information or design ideas and/or	Communicate scientific and/or technical	Evaluate data, hypotheses, and/or conclusions in	Evaluate the validity and reliability of and/or
solutions with others in oral and/or written forms	information orally and/or in written formats,	scientific and technical texts in light of competing	synthesize multiple claims, methods, and/or
using models, drawings, writing, or numbers that	including various forms of media as well as	information or accounts.	designs that appear in scientific and technical
provide detail about scientific ideas, practices,	tables, diagrams, and charts.		texts or media reports, verifying the data when
and/or design ideas.			possible.
		Communicate scientific and/or technical	Communicate scientific and/or technical
		information (e.g. about a proposed object, tool,	information or ideas (e.g. about phenomena
		process, system) in writing and/or through oral	and/or the process of development and the
		presentations.	design and performance of a proposed process or
			system) in multiple formats (i.e., orally,
			graphically, textually, mathematically).